3x^2+7x-162=0

Simple and best practice solution for 3x^2+7x-162=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+7x-162=0 equation:


Simplifying
3x2 + 7x + -162 = 0

Reorder the terms:
-162 + 7x + 3x2 = 0

Solving
-162 + 7x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-54 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '54' to each side of the equation.
-54 + 2.333333333x + 54 + x2 = 0 + 54

Reorder the terms:
-54 + 54 + 2.333333333x + x2 = 0 + 54

Combine like terms: -54 + 54 = 0
0 + 2.333333333x + x2 = 0 + 54
2.333333333x + x2 = 0 + 54

Combine like terms: 0 + 54 = 54
2.333333333x + x2 = 54

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = 54 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = 54 + 1.361111112

Combine like terms: 54 + 1.361111112 = 55.361111112
1.361111112 + 2.333333333x + x2 = 55.361111112

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 55.361111112

Calculate the square root of the right side: 7.440504762

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 7.440504762 and -7.440504762.

Subproblem 1

x + 1.166666667 = 7.440504762 Simplifying x + 1.166666667 = 7.440504762 Reorder the terms: 1.166666667 + x = 7.440504762 Solving 1.166666667 + x = 7.440504762 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 7.440504762 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 7.440504762 + -1.166666667 x = 7.440504762 + -1.166666667 Combine like terms: 7.440504762 + -1.166666667 = 6.273838095 x = 6.273838095 Simplifying x = 6.273838095

Subproblem 2

x + 1.166666667 = -7.440504762 Simplifying x + 1.166666667 = -7.440504762 Reorder the terms: 1.166666667 + x = -7.440504762 Solving 1.166666667 + x = -7.440504762 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -7.440504762 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -7.440504762 + -1.166666667 x = -7.440504762 + -1.166666667 Combine like terms: -7.440504762 + -1.166666667 = -8.607171429 x = -8.607171429 Simplifying x = -8.607171429

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.273838095, -8.607171429}

See similar equations:

| -9+12x=10(-12+12x)+3x | | 5y-9=7y+9 | | 5x=10x-3 | | 5-9=7+9 | | 13(x+2)=7x-40 | | 3x-3=-29 | | y-0.7=-2.5 | | -8(a+8)=-3a+6 | | 0.05x+-0.1x= | | 5x+6=5x+7 | | -3(4B-1)=-93 | | 23000+x+2000*10=500*10*12 | | X^2+40.96=0 | | -60=-4(1+R) | | 13x-7-5x+2=25 | | (x+18)(x+18)=(x+15)(x+18) | | 14a-1=19-2a | | 25000+10000+2000*x=500*x*12 | | 5(3t-7)= | | 25000+10000+1500*x=500*x*12 | | 8x+11x+5(-10)= | | 25000+1500*x=500*x*12 | | 15(2+x)-3=114 | | 0.25x=0.4x+0.05 | | 8u-u=u+28 | | 5-7A=5(1+5A) | | 9x-7-11x+2=31 | | .5b+4=2b+2 | | x-9.1=1.4 | | S+15+s=5s | | X^2-37.21=0 | | 3(2-x)=2x+9 |

Equations solver categories